
Internet Applications Design and
Implementation

(Lecture 7: Q&A)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

João Costa Seco (joao.seco@fct.unl.pt)
Jácome Cunha (jacome@fct.unl.pt)

João Leitão (jc.leitao@fct.unl.pt)

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Software Architecture

• What? Why? How?
• Why are Patterns important
• Why are Frameworks important

423

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Services and MicroServices

• Main characteristics, features and motivations
• Exercise on modelling of MS architectures
• Why is OpenAPI important, what are its main features?
• Exercise on the definition of interfaces between services in practice

424

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Architectural Patterns, Layered Architecture

• Purpose of each layered, rules to place software pieces, dependencies
• Data representation, DTO, DAO objects

425

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

REST architectural style

• Maturity Levels
• Properties of REST
• How to design an API with resources and subresources

426

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Data Abstraction, Component Based-Programming

• Definition of JPA interfaces
• Custom Queries
• Pre-fetching

427

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Assembling Applications, Testing with Mocks

• Dependencies
• Beans (@Service, @Component, @Bean)
• Mocks to test a component or a service (MVC, Repositories, Services)

428

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Security of Internet Applications

• Basic Spring Security Configuration
• Access Control Models
• Information Flow
• Model-based access control (related to Attribute Access Control)
• How to implement a security (access control) policy that depends on the

model. PreAuthorize + Service, PostAuthorize, PreFilter, PostFilter
• https://docs.spring.io/spring-security/reference/servlet/authorization/method-

security.html
• JWT Tokens, Capabilities in Services

429

https://docs.spring.io/spring-security/reference/servlet/authorization/method-security.html
https://docs.spring.io/spring-security/reference/servlet/authorization/method-security.html

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Sample Scenario

• Consider a headless server system for the management of train seat reservations in a railway
company. So, the users of the system are either passengers or the railway inspectors. A
passenger can list the trains that are available on a given date, the stations through which the
trains go, and the seats that are available from a given starting station to a finishing station. In
this scenario, the name train is used to signify a train trip, not the vehicle itself.

• The operations you need to account for are as follows: A passenger can reserve a seat in a
train, indicating the train and the starting and finishing station. A passenger can also list their
reservations and cancel or edit a reservation. There may be more than one passeger reserving
one seat in a train, as long as they do not overlap in time (stations). A railway inspector can list
all the passengers in their designated trains, they can edit the train schedule, adding or
removing trains and stations.

• As further constraints to the systems, consider the following: A passenger can only see their
own present and past reservations, and they can only cancel or edit a reservation up to one
hour before the train leaves the starting station. Railway inspectors can edit trains up to one day
before the train trip leaves.

430

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

REST

• Define a RESTful interface, Level 2 in the Richardson maturity scale, that
defines the operations on trains and reservations. List all the endpoints by
means of a Kotlin interface using data classes for DTO objects. No
annotations and extra code is needed. Remember to use different levels of
detail in different endpoints.

• Design the best EXTERNAL representation possible for the resources in the
system. Note that the internal representation in the database is not necessarily
the best to use in an API.

431

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

// General

GET /trains?date=XXX --> {id:number,date:Date,from:string,to:string,path:string[]}[]
GET /trains/{id}/path --> string[]
GET /trains/{id}/freeseats?from=XXX&to=XXX --> {id:number}[]

// passengers

POST /passengers/{username}/trips <<-- {train:number, from:string, to:string} -->>
number
GET /passengers/{username}/trips -->> {train:number, from:string, to:string}[]
DELETE /passengers/{username}/trips/{id}
PUT /passengers/{username}/trips/{id} <<-- {from:string, to:string}

// inspectors

GET /train/{id}/seats -->> {seat:number, passenger:string, from:string, to:string}[]
PUT /train/{id} <<-- {schedule:Date}

432

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

data class TrainDTO(val id:Long, val date:Date, val from:String, val to:String, val
path:String[])

data class SeatDTO(val id:Long)

data class TicketDTO{val id:Long, val train:Long, val from:String, val to:String}

data class TicketWIdDTO{val id:Long, val train:Long, val from:String, val to:String}

data class TicketUpdateDTO(val from:String, val to:String)

data class OccupancyDTO(val seat:Long, val passenger:String, val from:String, val
to:String)

data class ScheduleDTO(schedule:Date)

433

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

// General

GET /trains?date=XXX --> List<TrainDTO>
GET /trains/{id}/path --> List<String>
GET /trains/{id}/freeseats?from=XXX&to=XXX --> List<SeatDTO>

// passengers

POST /passengers/{username}/trips <<-- TicketDTO -->> Long
GET /passengers/{username}/trips -->> List<TicketWIdDTO>
DELETE /passengers/{username}/trips/{id}
PUT /passengers/{username}/trips/{id} <<-- TicketUpdateDTO

// inspectors

GET /trains/{id}/seats -->> List<OccupancyDTO>
PUT /trains/{id} <<-- ScheduleDTO

434

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

@RequestMapping("/api")
interface TrainController {

 // GET /trains?date=XXX
 @GetMapping("/trains")
 fun getTrainsByDate(@RequestParam date: String): List<TrainDTO>

 // GET /trains/{id}/path
 @GetMapping("/trains/{id}/path")
 fun getTrainPath(@PathVariable id: Long): List<String>

 // GET /trains/{id}/freeseats?from=XXX&to=XXX
 @GetMapping("/trains/{id}/freeseats")
 fun getFreeSeats(@PathVariable id: Long, @RequestParam from: String, @RequestParam to: String): List<SeatDTO>

 // POST /passengers/{username}/trips
 @PostMapping("/passengers/{username}/trips")
 fun createPassengerTrip(@PathVariable username: String, @RequestBody ticketDTO: TicketDTO): Long

 // GET /passengers/{username}/trips
 @GetMapping("/passengers/{username}/trips")
 fun getPassengerTrips(@PathVariable username: String): List<TicketWIdDTO>

 // DELETE /passengers/{username}/trips/{id}
 @DeleteMapping("/passengers/{username}/trips/{id}")
 fun deletePassengerTrip(@PathVariable username: String, @PathVariable id: Long): Void

 // PUT /passengers/{username}/trips/{id}
 @PutMapping("/passengers/{username}/trips/{id}")
 fun updatePassengerTrip(@PathVariable username: String, @PathVariable id: Long, @RequestBody ticketUpdateDTO: TicketUpdateDTO): Void

 // GET /trains/{id}/seats
 @GetMapping("/train/{id}/seats")
 fun getTrainOccupancy(@PathVariable id: Long): List<OccupancyDTO>

 // PUT /trains/{id}
 @PutMapping("/train/{id}")
 fun updateTrainSchedule(@PathVariable id: Long, @RequestBody scheduleDTO: ScheduleDTO): Void
}

435

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Datamodel

• Define the JPA (data) classes for the system described above and relate them
correctly using JPA annotations. Design the best INTERNAL representation
possible for the resources in the database. Note that the external
representation in the API is not necessarily the best to use in the database.

436

Internet Applications Design and Implementation, NOVA FCT, © 2015, João Costa Seco

Security

• Define two security policies, annotations, and corresponding services that
regulate the access for reading, and also for changing reservations in the
scenario above.

A passenger can only see their own present and past reservations, and they can
only cancel or edit a reservation up to one hour before the train leaves the
starting station. Railway inspectors can edit trains up to one day before the train
trip leaves.

437

