Internet Applications Design and Implementation
(Lecture 6 - Token-based Security, MicroServices and Capabillities)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

NOVA SCHOOL OF
| SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt

Overview: HT TP Authentication (Basic and Digest)

o Credentials (username/password) are repeated on each request

* All requests are vulnerable to attacks (instead of only the login request)

 Basic: username/password are passed in clear text and can be captured

* Digest: digests can also be captured and guessed by brute force attacks

e« Kind of ok under HTTPS, but...

 Must have a centralised authority to control and manage principal capabilities

* Does not easily support “logout” mechanisms (credentials are “always” valid)

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 371

Overview: Sessions to Implement security

o Stateless APls are good

* put not so good for:
 ephemeral or distributed authentication,
e capabllity based authorisation models
e protocol management,

e user preferences (in webapps)

e Hence, let's implement session management... what are the alternatives”

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 372

Outline

e Sessions and cookies

* Joken based authentication
e JSON Web Token (JWT)

o OAuth?

 Microservices and capabillities

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 373

Internet Applications Design and Implementation
(Lecture 6 - Part 1 - Sessions and Cookies)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt

Basic support for sessions, HT TP cookies

e Basic support to represent stateful information on the client side

* Designed to allow websites to remember stateful information about a session
e Shopping carts, authentication info, browser activity, search criteria, etc.

e Source of many security vulnerabilities, attacks and tracking of user activity

» Managed by client and server alike

e Basically a string managed as a key/value store, can contain cyphered values

https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 375

https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie

Cookies can be read and written in Spring

* |In Spring the annotation @CookieValue is used to retrieve a value from the
HI TP cookie and map the value to a parameter.

@GetMapping("/applications")
fun getAll(

@CookievValue (value="filter", defaultvalue = "") filter:String
): List<ApplicationDTO> =

applications.getAll(filter).map { ApplicationDTO(1it) }

o Without a declared default value, an exception will be thrown
(java.lang.IllegalStateException) if the cookie in the request does
not contain the key “filter".

o | | ~ https://dzone.com/articles/how-to-use-cookies-in-spring-boot
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 376

Cookies can be read and written in Spring

* Jo set the value of a cookie in SpringBoot, object HttpServletResponse must
be added a new cookie value.

@PostMapping("/students/{id}/applications")
@ResponseStatus (HttpStatus.CREATED)
fun create2(@PathVariable student id:String,
@RequestBody @Valid anApplication:ApplicationDTO,
response: HttpServletResponse) {
val student = students.get(student 1id)
val 1d = applications.create(anApplication.toDAO(student))
val cookie = Cookie('current application”, "id");
response.addCookie(cookie);

* Disclaimer: this is just a sample on how to use cookies in Spring not a
recommendation that you should do so...

o | | ~ https://dzone.com/articles/how-to-use-cookies-in-spring-boot
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 377

Sessions

* [o have necessary stateful information in a stateless world
* Basic support to represent stateful information on the server side

* A session Is a sequence of network HT TP requests and responses associated
to the same principal. A session creates the opportunity to create a common
context to the set of interactions between parties.

 From the first interaction, a session |ID (or token) is established, even for
anoNymous users.

e This session token and/or identifier iIs used on the server side for a number of
OUrPOSES.

https://www.ietf.org/rfc/rfc2616.txt

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html|

https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 378

Session management in Spring

e Spring controls how a session is created and how Spring Security will handle it.
* always: a session will always be created if one doesn't already exist
* fRequired: a session will be created only if required (default)
* never: the framework will never create a session itselt but it will use one it it already exists

» stateless: no session will be created or used by Spring Security

override fun configure(http: HttpSecurity) { Use the Lambda DSL instead!

http.csrf().disable()
.authorizeRequests ()
.anyRequest () .authenticated()
.and () .sessionManagement().sessionCreationPolicy(SessionCreationPolicy.IF REQUIRED)

(Read here and here)

https://www.baeldung.com/spring-security-session

hitps://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT /reference/html5/
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 379

http://www.apple.com/uk
https://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT/reference/html5/
https://docs.spring.io/spring-security/reference/migration-7/configuration.html#_use_the_lambda_dsl
https://docs.spring.io/spring-security/reference/servlet/exploits/csrf.html#csrf-components

Session management in Spring

| NN _ 73 jrcs — -zsh — 80x24
; jrcs@JoaoCosSecosMac ~ % http :8080/applications ——auth admin:pass | %
Spring controls how i1s5 5 2ee it

Cache-Control: no-cache, no-store, max—age=0, must-revalidate
* always: a session wijl|sennection: keepzalive =
Content-Type: application/json
Date: Sun, 25 Oct 2020 13:46:23 GMT
* IfRequired: a sessionExpires: @
Keep—Alive: timeout=60
_ P Y a0ma s 0 = e —————— ——— . e
* never: the framework se- Cookie: JSESSIONID= CBC98BBDE7EQ4C24FB1BO311C6C34254; Path=/; HttpOnly
TranstffFﬁ?ﬁﬁTﬁﬁ='?ﬁﬁﬁ??ﬁ — — —
° Stateless ale S@SSlOn X-Content-Type-Options: nosniff
X—Frame-0Options: DENY
X-XSS-Protection: 1; mode=block

override fun configure(hl]

http.csrf().disable(jrcs@loaoCosSecosMac ~ % [
.authorizeReques
.anyRequest () .au
.and() .sessionMa IRED)

https://www.baeldung.com/spring-security-session

hitps://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT /reference/html5/
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 380

http://www.apple.com/uk
https://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT/reference/html5/

Session management in Spring

e Spring controls how a session is created and how Spring Security will handle it.
* always: a session will always be created it one doesn't already exist
* [fRequired: a session will be created only it required (default)
* never: the framework will never create a session itself but it will use one if it already exists
» stateless: no session will be created or used by Spring Security
override fun configure(http: HttpSecurity) {
http.csrf().disable()
.authorizeRequests ()

.anyRequest () .authenticated()
.and() .sessionManagement () .sessionCreationPolicy(SessionCreationPolicy.STATELESS)

https://www.baeldung.com/spring-security-session

https://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT /reference/html5/
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 381

http://www.apple.com/uk
https://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT/reference/html5/

Session management in Spring

® OO0 N jrcs — -zsh — 80x24
: jrcs@JoaoCosSecosMac ~ % http :8080/applications ——auth admin:pass :
e SPring controls hOW i e i.1 200 It

Cache-Control: no—-cache, no-store, max—age=0, must-revalidate
Connection: keep—alive
Content-Type: application/json
Date: Sun, 25 Oct 2020 13:49:38 GMT
* [fRequired: a session Expires: 6
Keep—Alive: timeout=60
Pragma: no-cache
e never: the framework Transfer—-Encoding: chunked
X-Content-Type-Options: nosniff

+ stateless: no session - ;2" 2 ones PR

* always: a session will

mode=block

[]

override fun configure (ht
http.csrf().disable()
.authorizeRequest
.anyRequest () .aut

.and () .sessionMar S)

jrcs@JoaoCosSecosMac ~ % D

hitps://www.baeldung.com/spring-security-session

hitps://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT /reference/html5/
Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 382

http://www.apple.com/uk
https://docs.spring.io/spring-security/site/docs/5.4.1-SNAPSHOT/reference/html5/

Session management

e Spring Security installs a filter that handles sessions in the Security Context
(SecurityContextPersistenceFilter).

* [he session can be managed using the bean
(HttpSessionSecurityContextRepository) that uses HI TP Session as storage.

e For the STATELESS attribute (NullSecurityContextRepository) is used

e Sessions can be made persistent automatically by means of jdbc, or redis

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.session</groupId>
<artifactId>spring-session-data-redis</artifactId>
</dependency>

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 383

Working With the Session

* Spring declares and handles session automatically through beans. A bean with scope
‘session” Is created when the session is first created and linked to the lifecycle of the

HTTPSession object.

@Component
@Scope('"session", proxyMode = ScopedProxyMode.TARGET CLASS)
class SessionInfo(var numberOfGets:Int = 0, var numberOfPosts:Int = 0)

e This bean can then be used Iin other beans, for instance, a controller.

@RestController
class ApplicationController(val applications: ApplicationService): ApplicationAPI {

@Autowlired lateinit var info: SessionInfo;

override fun getAll(): List<ApplicationDTO> {
print (info.numberOfGets++)
return applications.getAll().map { ApplicationDTO(it) }

https://www.baeldung.com/spring-security-session

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 384

Working With the Session

* Spring declares and handles session automatically through beans. A bean with scope
‘session” Is created when the session is first created and linked to the lifecycle of the

HTTPSession object.

@Component
@Scope('"session", proxyMode = ScopedProxyMode.TARGET CLASS)
class SessionInfo(var numberOfGets:Int = 0, var numberOfPosts:Int = 0)

e This bean can then be used Iin other beans, for instance, a controller.

@RestController
class ApplicationController(val applications: ApplicationService): ApplicationAPI {

override fun getAll(session:HttpSession): List<ApplicationDTO> {
var 1nfo = session.getAttribute(SessionInfo) as SessionlInfo;
session.setAttribute(SessionInfo, SessionInfo(info.numberOfGets+1, info.numberOfPosts))

return applications.getAll().map { ApplicationDTO(it) }

https://www.baeldung.com/spring-security-session

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 385

Internet Applications Design and Implementation
(Lecture 6 - Part 2 - Token-based Authentication - JWT)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt

HIT TP Authentication modes

e Basic Authentication

* username/password in the header of requests using

e Digest Authentication

* has of username/password in the header of requests (M

e OAuth Token-based authentication and JWT

* signed bearer to
iINndependent aut

<en that allows Interactions between

norisation and resource servers

hitps://spring.io/guides/tutorials/spring-boot-oauth?/

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&do Costa Seco

B3aseb4 encoding

D5 hashing with nonce)

Internet Engineering Task Force (IETF) M. Jones
Request for Comments: 7519 Microso ft
Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity
N. Sakimura

NRI

May 2015

JSON Web Token (JWT)
Abstract

JSON Web Token (JWT) is a compact, URL-safe means of representing
claims to be transferred between two parties. The claims in a JWT
are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web
Encryption (JWE) structure, enabling the claims to be digitally
signed or integrity protected with a Message Authentication Code
(MAC) and/or encrypted.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7519.

387

https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc2069
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519

loken-pased authentication

 Adds a level of indirection and avoids repeated username/password validation (avoids
password discovery attacks on basic authentication mode)

* Allows users to access and manipulate a given resource without using username/password

* More benefits:
e robust authentication solution for repeated requests
e allows custom limited session duration (limited trust)
e quickly transfer (user) information between systems (micro services)
* allows the customisation of roles assigned to a given user at a given time
* single sign-on in federated systems

e external authorization servers (google, facebook, github, etc)

e can be stored in local storage/cookies, can be invalidated or customized AuthO
u

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 388

https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com

loken-pased authentication

» (Good list of benefits, unknown author, [ink) s

 Cross-domain/ CORS: cookies + CORS don't play well across different domains.
A token-based approach allows you to make AJAX calls to any server, on any domain
because you use an HITP header to transmit the user information.

» Stateless (a.k.a. Server side scalability): there is no need to keep a session store, the token is JWT HANDBOOK
a self-contained entity that conveys all the user information. The rest of the state lives in cookies or
local storage on the client side.

By Sebastian Peyrott .':q AuthO

 CDN: you can serve all the assets of your app from a CDN (e.g. javascript, HTML, images, etc.),
and your server side is just the API.

 Decoupling: you are not tied to any particular authentication scheme. The token might be generated anywhere, hence your
APl can be called from anywhere with a single way of authenticating those calls.

 Mobile ready: when you start working on a native platform (10S, Android, Windows 8, etc.) cookies are not ideal when
consuming a token-based approach simplifies this a lot.

 CSRF: since you are not relying on cookies, you don't need to protect against cross site requests (e.g. it would not be
possible to sib your site, generate a POST request and re-use the existing authentication cookie because there will be none).

 Performance: we are not presenting any hard perf benchmarks here, but a network roundtrip (e.g. finding a session on
database) is likely to take more time than calculating an HMACSHAZ256 to validate a token and parsing its contents.

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 389

https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://auth0.com/resources/ebooks/jwt-handbook
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown
https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown

JToken-based Authentication

* Jokens can be managed manually in Spring using cookies (client-side) and
sessions (server-side).

* [he integration in Spring Security is performed by adding a filter in the
Security Filter Chain that intercepts and overrides the authentication attempts.

e A standardised way of providing authentication is Bearer Authentication,
where a token Is inserted in the “Authorization Header”.

https://tools.ietf.org/ntml/ric6750

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 390

Spring Security Filters

ableEncode
WebAsj@ihcManagerintegrationFilter

SealirityContextHolderFilter

eaderWriterFilter

CorskFilter
LogoutFilter
icAuthenticati ilter
R

SecurityC

estCacheAwar@Filter
extHolderAwar@RequestFilter
ousAuthenticationFilter
Filter

r

Anon
ExgeptionTranslati
thorizationFi

https://docs.spring.io/spring-security/site/docs/3.0.x/reference/security-filter-chain.html
Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco 391

Spring Security Filters

ableEncode

WebAsj@ihcManagerintegrationFilter

Se

itynnnll-nv-l-u:\l uEsldaAw

public void doFilter(

€2 ServletRequest reg,

ServletResponse res,
FilterChain chain) throws IOException, ServletException {

chain.doFilter(reqg,res)

R es
SecurityCahtex !
Anonj¥inousAuthe

Filter

r

ExgeptionTranslati
thorizationFi

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco 392

Spring Security Filters

sableEncodelU

tionkilter
Filter

WebAg§incManagerinte
rityContextHol
HeaderWriterFl
CorsFilter
Logoutkilter
rdAuthenticati

ICAuthenticatio

FilterToJWT

lter

uestCacheAwar@rilter

SecurityC@htextHolderAwarg@RequestFilter

AnoBmMousAuthentic nkilter

-X€eptionTranslatiofif-ilter

AuthorizationFll

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco 393

Token Creation - | nain

class UserPasswordAuthenticationFilterToJWT (

defaultFilterProcessesUrl: String?,
private val anAuthenticationManager: AuthenticationManager
) : AbstractAuthenticationProcessingFilter(defaultFilterProcessesUrl) {

T override fun attemptAuthentication(request: HttpServletRequest?,
response: HttpServletResponse?): Authentication? {
//getting user from request body
val user = ObjectMapper().readValue(request!!. inputStream, UserDAO: :class. java)

// perform the "normal"” authentication
val auth = anAuthenticationManager.authenticate(UsernamePasswordAuthenticationToken(user.username, user.password))

return 1f (auth.isAuthenticated) {
// Proceed with an authenticated user
SecurityContextHolder.getContext().authentication = auth
auth

} else
null

T override fun successfulAuthentication(request: HttpServletRequest,
response:. HttpServletResponse,
filterChain: FilterChain?,
auth: Authentication) {

// When returning from the Filter loop, add the token to the response

addResponseToken(auth, response)
Internet Applications Design 3 394

Token Creation - Login N

object JWTSecret {

private const val passphrase

"este € um grande segredo que tem que ser mantido escondido”
val KEY: String = Baseb4.getEncoder().encodeToString(passphrase. toByteArray())

const val SUBJECT = "JSON Web Token for CIAI 2019/20"

const val VALIDITY = 1000 * 60 * 60 * 10 // 10 minutes 1in microseconds

private fun addResponseToken(authentication: Authentication, response: HttpServletResponse) {

val claims = HashMap<String, Any?>()
claims["username”] = authentication.name

val token = Jwts
.builder()
.setClaims(claims)
.setSubject(IWTSecret.SUBJECT)
.setIssuedAt(Date(System.currentTimeMillis()))
.setExpiration(Date(date: System.currentTimeMillis() + JWTSecret.VALIDITY))
.s1gnWith(SignatureAlgorithm.HS256, JWTSecret.KEY)
.compact()

response.addHeader("Authorization"”, "Bearer $token")
Internet Applications Design 395

class UserPasswordAuthenticationFilterToIWT (
defaultFilterProcessesUrl: String?,

private val anAuthenticationManager: AuthenticationManager
0 iadi-2019-20-private — -bash — 70x23

$ http POST :8080/login username=user password=password

r.password))

Internet Applications D

JSON Web Token (JWT) Ta

o Baseb4, signed token that asserts claims about a session/user
e Customisable claims (can carry user information, roles, dates)

e Can include ciphered information also, e.g. user capabilities

e Bearer
eyJhbGciOJIUzITNIJ9.eydzdWIIOIJKUOIOIFAIYIBUb2tIbiBmb3IgQOIBSSAyM

DE5LzIwliwiZXhwljoxNTexNzgOMIOLCJpYXQIOJEINZE3NDgyMjQsInVzZXJuY
W1llioidXNIciJ9.Mglv5EUab1HjD1vST5LkUObvHSYOMyEHFt7-KDVoZ4

headerBo64.payloadB64.SigHS256

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco 397

~‘\‘ J w T Debugger Libraries Introduction Ask Get a T-shirt! Crafted by < AuthO

ALGORITHM HS256

Encoded Decoded

HEADER:

eyJhbGci0iJIUzITNiJ9.eyJzdWIi0iJKUB9OIFd

1YiBUb2t1biBmb3IgQ@1BSSAyMDESLzIwIiwiZXh «
wIjoxNTcxNzgOMjIOLCJIpYXQi0jETNZE3NDgyMjQ } algh: THS236
sInVzZXJuYW11lIjoidXNlciJ9.MqIv5s

. PAYLOAD:

{
"sub”: "JSON Web Token for CIAI 2019/20",
‘exp’: 1571784224,
AR =R N VA VR PV Tue Oct 22 2019 13:43:44 GMT+0100 (Western European Summer Time)
‘username” : "user’
}

VERIFY SIGNATURE

Spring Security Filters

=HSADIeCNCcogeUr

ronkilter
Filter

WebAg§iIncManagerint
S

rityContextHol
HeaderWriterFl

CorsFilter
Logoutkilter
UserPasswordAuthenticatighFilterToJWT
JWTAuthenticationkilter

-

=)
SecurityC

SICAUuthenticatiofigilter

juestCacheAwarnérilter

textHolderAwar@iRequestFilter

AnoBMmousAuthentic nkilter

yotion Translatiofifilter

AuthorizationFilier

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco 399

override fun doFilter(request: ServletRequest?,

TOken va“dathn response: ServletResponse?,

chain: FilterChain?) { C
val authHeader = (request as HttpServletRequest).getHeader("Authorization")

if(authHeader != null && authHeader.startsWith(prefix: "Bearer ")) {
val token = authHeader.substring(startindex: 7) // Skip 7 characters for "Bearer "
val claims = Jwts.parser().setSigningKey(JWTSecret.KEY) .parseClaimsJws(token).body
// parsing already checks validity
val exp = (claims["exp"] as Int).toLong()
val authentication = UserAuthToken(claims["username"] as String,

ListO0f(SimpleGrantedAuthority(role: "ROLE_USER")))

// Can go to the database to get the actual user information (e.g. authorities)

SecurityContextHolder.getContext() .authentication = authentication

// Renew token with extended time here. (before doFilter)
addResponseToken(authentication, response as HttpServletResponse)

chain!!.doFilter(request, response)
} else {
chain!!.doFilter(request, response)

}

Internet Applications Design and Implementation, FCTUNL, © fuwwsuvavnos eeeeeee——————————" 100

Jloken Validation

class UserPasswordAuthenticationFilterToJWT (

defaultFilterProcessesUrl: String?,
@ ¢ iadi-2019-20-private — -bash — 70x24

Y : AdbS http :8080/pets Authorization:"Bearer eyJhbGci101JIUzIAN1J9.eyJzdWIiO!

1JKUO90IFd1Y1BUb2t1biBmb3IgQO1BSSAYMDESLZIwIiwiZXhwIJjoxNTcxNzgONzgl1LCJ

M PYXQ10JEINzE3NDg30DUsINVzZXJuYW11IjoidXN1lc1J9.hBenpmApZMcEOalI4p—-UKIy5
9FSe0-19Fw987He7HGg"

e, user.password))

[]
5 B

addResponseToken(auth, response)

Internet Applications Design ar } 401

Internet Applications Design and Implementation
(Lecture 6 - Part 3 -OAuth)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

_ NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt

OAuth 2.0

* Provides a protocol for authorisation for Internet applications, resource
owners, through third-parties on behaltf of a principal.

 OAuth defines four roles (from the RFC):

resource owner: An entity capable of granting access to a protected resource. WWhen the
resource owner Is a person, it is referred to as an end-user.

resource server: The server hosting the protected resources, capable of accepting and
responding to protected resource requests using access tokens.

client: An application making protected resource requests on behalf of the resource owner
and with its authorisation.

A

authorization server: The server issuing access tokens to the client after successfu\\%,» U ¥

authenticating the resource owner and obtaining authorisation.
https://tools.ietf.org/html/rfc6749

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 403

Auth 2.0 protocol flow

| L —— + L —— +
| |--(A)- Authorization Request -> Resource

‘ | Owner

‘ |<—(B)—— Authorization Grant ---

‘ | Fmm————————————— +
| |

‘ | DU +
\ |——(C)-- Authorization Grant -->| Authorization

| Client | Server

‘ |<-(D) ————— Access Token —-————--

‘ | DR +
| |

‘ | o +
| | -=(E)==——- Access Token —-———-—- > Resource

‘ | sServer

| |

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 404

JToken-pased Interactions

: Authorization
User Agent Client e

initiate authorization

Y S ——— = :
submit credentials

submit credentials [client_id, redirect_uri) >_‘_
: valida;e
» return authorization code | credentials
redirect authorization code S

request token [client_secret, auth_code]

G

|
validate client
<----'?.“£’I‘.a,°§§§§_}9§grj__" and code
interact) — call AP [ao:oess_token]
. validate
ERNT IESpONEE token

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco

- - - -

405

https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd
https://hackernoon.com/mobile-api-security-techniques-part-3-1e1e092aeacd

Using spring...

e Spring Boot provides an implementation for oAuth 2.0 that is easy to configure
by loading a single module;

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-oauth2-client</artifactId>
</dependency>

e and configuring two properties

spring.security.oauth2.client.registration.github.client-id = client-id
spring.security.oauth2.client.registration.github.client-secret = client-secret

https://spring.io/guides/tutorials/spring-boot-oauth?2/

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 406

The network interactions

1. Arequest is captured by a filter in Spring Security with no token

2. ltis redirected to :

http://<yourserver>/ocauth2/authorize/github?redirect uri=<TheURIOfYourApp>

3. The user is redirected to the AuthorizationUrl on GitHub

4. When authorised, It Is redirected to:

http://<yourserver>/oauth2/callback/github

that contacts GitHub to produce the token

5. The user is redirected to the theuriofYourapp that was sent in the first place

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 407

Internet Applications Design and Implementation
(Lecture 6 - Part 4 - Capabillities and Microservices)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt

Introduction to Microservices Security

e Securing microservices is challenging

e Decentralised services
* Multiple points of vulnerability

* Heterogeneous views on security

» Difficult to track access and permissions across services

e Authentication

* A centralised server for each application

e Different applications may share services (must agree on the authorization mechanism)

e Authorisation

 Each service needs an appropriate authorisation mechanism

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco 409

Authentication solutions

» Authorisation server to produce JWT tokens for each service

Service 1

\ 4

Service 2

APP / APl Gateway
(Authentication)

Service 3

Service 4
Authorisation Server

Eureka Server Service 5

Registry

Example:

https://www.krakend.io/blog/microservices-authorization-secure-access/

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 410

https://www.krakend.io/blog/microservices-authorization-secure-access/

One AS - One Service: Access-control with

Authorisation Server Service 1

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 411

One AS - One Service: Access-control

data class ResourceDTO(val data:String) = Jodo Costa Seco
Service 1 data class ResourceWIdDTO(val id:Long, val data:String) = Jodo Costa Seco

@RequestMapping(®v " /resources") = Jodo Costa Seco
interface ResourceAPI {

EGetMapping()®v = Jodo Costa Seco
@CanReadAl1lResources()
fun getA1l1():List<ResourceWIdDTO>

@PostMapping() ®v = Jodo Costa Seco
@CanCreateResources()
fun createResource(@RequestBody resource: ResourceDTO0):Long

@PreAuthorize("@capabilitiesService.canReadAll(principal)") @GetMapping(@®v"/{id}") = Jodo Costa Seco
annotation class CanReadAllResources @CanReadOneResource()

fun getOne(@PathVariable id:Long): ResourceWIdDTO
@PreAuthorize("@capabilitiesService.canCreate(principal)") }

annotation class CanCreateResources

T ————— N

@PreAuthorize("@capabilitiesService.canReadOne(principal, #id)") = Jodo Costa Seco
annotation class CanReadOneResource

Internet AppliCe.e..

One AS - One Service: Service with Capabilities

@PreAuthorize("@capabil
annotation class CanRea

@OPreAuthorize("@capabil
annotation class CanCre

@PreAuthorize("@capabil
annotation class CanRea

fun

fun

fun

data class ResourceDTO(val data:String) Jodo Costa Seco

Joao Costa Seco

Service 1

canReadAll(user: Principal): Boolean {

data class ResourceWIdDTO(val id:Long, val data:String)

Joao Costa Seco
val capabilities = (user as UserAuthToken).capabilities

capabilities.get(0) // 0 means * because we assume that ids begin in 1

val operation
return operation != null && lessOrEqual(opl: "READ", operation)

canCreate(user: Principal): Boolean { Jodo Costa Seco

val capabilities = (user as UserAuthToken).capabilities
val operation = capabilities.get(0)

return operation != null && lessOrEqual(opl: "CREATE", operation)

private fun lessOrEqual(opl:String, op2:String)

canReadOne(user: Principal, id:Long): Boolean { = Jodo Costa opl == 0p2
val capabilities = (user as UserAuthToken).capabilities " "
opl == "NONE
: ke : op2 == "ALL"
val operationOne = capabilities.get(id)
opl == "READ" && op2 == "WRITE"

capabilities.get(0OL)

val operationAll

T — T

return operationOne !'= null && lessOrEqual(opl: "READ", operationOne) ||
operationAll != null && lessOrEqual(op1: "READ", operationAll)

|nternet Appllo"““’ T T T T S T —

413

One AS - One Service: Token

Authorisation Server Service 1

* Joken are unforgeable sets of
capabilities (resource, operation)

* Operations are defined per service

e Custom tokens can be made for
each operation

e Matchers can be used to
generalise operations
and resources

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco

EnCOd ed PASTE A TOKEN HERE

leyJhbGci0iJIUZITNiJ9 . eyJzdWIi0iJpbnR1cn
NlcnZpY2VOb2tlbiIsImNhcGFiaWxpdGllcyI6W
3sicmVzb3VyY2UiOjAsIm9wZXJhdGlvbiI6IkFM
TCJIXSwiZXhwIjoxNzMwMTITO0TQwWLCJpYXQiOjE
3MzAxMjUzNDASInVzZXJuYW11lIjoiYWRtaW4ifQ
.qyVI_oDLyjhtTHUSpNFmFLYUHBLWD56-
PKpfiiS5aids

[

{
"resource': 1,
"operation": “DELETE"

Fy

{
"resource': 2,
"operation": "WRITE"

s

{
"resource": 3,
"operation": "ALL"

s

- {

"resource': 0,
"operation': “READ"

I3

]

Decoded .. omiomaoseone:

HEADER: ALGORITHM & TOKEN TYPE

{

"alg": "HS256"
}
PAYLOAD: DATA
{
"sub": "interservicetoken",
"capabilities": [

{

"resource": 0,
"operation”: "ALL"

}
1,
"exp": 1730125940,

"iat": 1736125340,
"username" : "admin"

}

VERIFY SIGNATURE

HMACSHA256 (

base64UrlEncode(header) + "."

base64UrlEncode(payload),
your-256-bit-secret

) () secret base64 encoded

414

One AS - One Service: Loading the Token

val claims = Jwts.parser().setSigningKey(utils.key).parseClaimsJws(token).body
Author val capabilities = LinkedHashMap<Long,String>()
(claims["capabilities"] as ArraylList<LinkedHashMap<String, *>>).forEach {
val key = (it["resource"] as Integer).tolLong()
val operation = it["operation"] as String

data class UserAuthToken(Jodo Costa Seco
capabilities.put(key, operation)

private val login:String,
private val authorities:List<GrantedAuthority>,
val capabilities: LinkedHashMap<Long, String>

) : Authentication {

val authentication = UserAuthToken(
claims["username"] as String,
list0f(SimpleGrantedAuthority(role: "ROLE_USER")),
capabilities

SecurityContextHolder.getContext() .authentication = authentication

utils.addResponseToken(authentication, response as HttpServletResponse)

chain!!.doFilter(request, response)

) () secret base64 encoded

. . . — i
Internet Applications Design and Implementation; , - Joao Costa Seco 415

One AS - One Service

Authorisation Server Service 1

e Authorisation Service: Issues tokens
tO access resources pbased on user
credentials In 1ts own context.

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco

private fun getResourceToken():String { Jodo Costa Seco *

val claims = HashMap<String, Any?>()

// If needed include the username
//val authentication = SecurityContextHolder.getContext().authentication
//val username = authentication...

claims["username"] = "John"
claims["capabilities"] = getCapabilities(username: "John")

val key = Baseé4.getEncoder().encodeToString(jwtSecret.toByteArray())
val token = Jwts.builder()

.setClaims(claims)

.setSubject(subject)

.setIssuedAt(Date(System.currentTimeMillis()))

.setExpiration(Date(date: System.currentTimeMillis() + expiration))

.signWith(SignatureAlgorithm.HS256, key)

.compact()

return token

416

One AS - One Service

Service 1

Authorisation Server

e Authorisation Service: Issues tokens
tO access resources pbased on user
credentials In 1ts own context.

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jodo Costa Seco

private fun getCapabilities(username:String) : List<Capability> { Jodo Costa Seco

val capabilities = mutablelistOf<Capability>()

resources.findByOwner (username).forEach {
// ideally focus on the resources that are involved in the request

capabilities.add(Capability(it.id, operation: "ALL"))

// the create capability may depend on the role in the main app

capabilities.add(Capability(resource: L, operation: "CREATE"))

// uncomment to test the readAll method
// capabilities.add(Capability(OL, "READ"))

// may add other resources with operations READ, WRITE, UPDATE, ETC
// may use "O" to match all resources

// may be perfected with lists and general matchers

return capabilities

417

One AS - One Service - One App

@ORestController = Jodo Costa Seco

©ORequestMapping(®v"/hello")
class HelloController(val resources: ResourceAPI) {

©GetMapping() ®v = Jodo Costa Seco
fun hello() = resources.getAll1()

APP @GetMapping(®v"/{id}") = Jodo Costa Seco

fun helloOne(@PathVariable id:Long) = resources.getOne(id)

EPostMapping() ®v = Jodo Costa Seco

// This is a dedicated client, with a dedicated configuration class

. . L) fun helloCreate() = resources.createResource(ResourceDTO(data: "Hello, World!"))
@FeignClient(name = "service", Jodo Costa Seco

configuration = [ResourceAPIConfig::class])

interface ResourceAPI { @ExceptionHandler(ForbiddenException::class) Jodo Costa Seco
@GetMapping (B " /resources”) = Joso Costa Seco @ResponseStatus(HttpStatus.FORBIDDEN)
fun getAl1():List<ResourceWIdDTO> fun handleForbiden(e: ForbiddenException) = e.message
@PostMapping(®v " /resources") = Jodo Costa Seco)
fun createResource(@RequestBody resource: ResourceDT0):Long // Other exception handlers go here. ..

}
@GetMapping(®v"/resources/{id}") Jodo Costa Seco
T ————————— N

fun getOne(@PathVariable id:Long): ResourceWIdDTO

}

T ———— T

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 418

One AS - One Service - One App

@Configuration Jodo Costa Seco *

class ResourceAPIConfig(
@Value("\${jwt.secret}") val jwtSecret: String,
@Value("\${jwt.expiration}") val expiration: Long,

@Value("\${jwt.subject}") val subject: String,
val resources: ResourceRepository) {

(©0Bean Jodo Costa Seco

fun resourceAPIInterceptor(): RequestInterceptor {

val resourceToken = getResourceToken() class BadRequestException: Exception() Jodo Costa Seco

template.header(name: "Authorization", ..values: "Bearer ${resourceToken}") class ForbiddenException: Exception() = Jodo Costa Seco

! class UnauthorizedException: Exception() Jodo Costa Seco

class CustomErrorDecoder : ErrorDecoder { Jodo Costa Seco

L — U vy T a Lq

override fun decode(methodKey: String?, response: Response): Exception {
return when (response.status()) {
400 -> Exception("Bad Request", BadRequestException())
401 -> Exception("Unauthorized", UnauthorizedException())
403 -> Exception("Forbidden", ForbiddenException())
404 -> Exception("Not Found", NotFoundException())
500 -> Exception("Server Error")
else -> Exception("Dunno")

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 419

One AS - One Service - One App

® O = lab5 — -zsh — 77x23

jcs@Joaos—MacBook—-Air lab5 % http :8080/hello/1
HTTP/1.1 200

Connection: keep-alive

' Content-Type: application/json

Date: Mon, 28 Oct 2024 14:58:14 GMT

Keep—Alive: timeout=60

Transfer-Encoding: chunked

{
"data": "one",
nidh: 1

' jcs@Joaos—-MacBook-Air lab5 % http :8080/hello/3

HTTP/1.1 403

Connection: keep—-alive

Content-Length: @ |
‘Date: Mon, 28 Oct 2024 14:58:16 GMT |
Keep—Alive: timeout=60 |

sourceWIdDTO

Internet Applications Design and Implementation, NOVA FCT, © 2015, Jo&o Costa Seco 420

