Internet Applications Design and Implementation
(Lecture 3 - Server side programming, RESTtul APIs)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

Outline

* [he architectural style REST to instantiate webservices
o Specifying webservices with OpenAP| and Spring
* Richardson Maturity Model

e Server Side Patterns

e Model View Controller

 Dependency Injection

* Builder

e Microservices Patterns

e Service Registry

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 136

Internet Applications Design and Implementation
(Lecture 3, Part 1 - Software Architecture - OpenAPl)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

Swagger/OpenAP|

o Specification language for REST APIs (Yaml or JSON)

* Provides online (reflective) information on service(s)

 Paths and operations (G

- /companies,

POST /employees)

* [nput and output parameters for each operation (samples)

e Authentication methods

e (Contact information, license, terms of use and other information.

* Design, iImplementation and validation tools

o Editor, Ul, Codegen, Spring Annotations

e Extensions to include more information about contracts

Internet Applications Design and Implementation, NOVA SST, © 2015, Joao Costa Seco

138

http://editor.swagger.io/
https://swagger.io/tools/swagger-ui/

Swagger/OpenAPI - Yaml|

e (General information about the API

swagger: "2.0"
info:
description: "This 1s a sample directory of partner companies."”
version: "1.0.0"
title: "Partner Companies”
host: "partners.swagger.io"
basePath: "/"
tags:
- nhame: "companies"
description: "Everything about your partner companies”
externalDocs:
description: "Find out more"
url: "http://swagger.io"
- name: "contacts”
description: "Know all about your partners employees™
schemes:
- "https”
- “http"
paths:

definitions:
externalDocs:

description: "Find out more about Swagger"
url: "http://swagger.io"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 139

Swagger/OpenAPI - Yaml|

e Specific information about each path/operation available

paths:
/companies:
get:
tags:
- "companies"
summary: "Get the 1list of all companies”
description: ""
operationld: "getCompanies”
produces:
- "application/json”
parameters:
- 1n: "query"
name: "search"
description: "Filter companies by name, description, or address”
type: "string"
required: false
responses:
200
description: "successful operation”
schema:
type: "array"
1tems:

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 140

Swagger/OpenAPI - Yaml|

e Specific information about each path/operation available

post:
tags:
- "companies"
summary: "Add a new partner company to the collection”
description: ""
operationld: "addCompany"
consumes:
- "application/json”
parameters:
- 1n: "body"
name: "company"
description: "Company object that needs to be added to the collection”
required: true
schema:
$ref: "#/definitions/Company"
responses:
200
description: "Company added"
405 :
description: "Invalid input”

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 141

Swagger/OpenAPI - Yaml|

e Specific information about each path/operation available

/companies/{id}:
get:
tags:
- "companies"
summary: "Gets an existing company with {id} as identifier"
description: "Gets an existing company with {id} as identifier"”
operationld: "getCompany"
parameters:
- 1n: "path"
name: "1id"
description: "The identifier of the company to be updated"
required: true
type: "integer"
format: "into64"
responses:
200
description: "The company data"
schema:
$ref: "#/definitions/Company"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 142

Swagger/OpenAPI - Yaml|

e Specific information about each path/operation available

put:
tags:
- "companies"
summary: "Update an existing company with {id} as identifier"
description: "Update an existing company with {id} as identifier"
operationld: "updateCompany"
consumes:
- "application/json"
parameters:
- 1n: "path"
name: "id"
description: "The identifier of the company to be updated"
required: true
type: "integer"
format: "intoe4"
- 1n: "body"
name: "company"
description: "Company object that needs to be updated in the collection"
required: true
schema:
$ref: "#/definitions/Company"
responses:
200:
description: "Updated company"
400:
description: "Invalid ID supplied"
404
description: "Company not found"
405:
description: "Validation exception"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 143

Swagger/OpenAP| - Yam!

e Specific information about datatypes

definitions:

Company:
type: "object"
required:
- "name"
- "address™
- "email"
properties:
1d:
type: "integer"
format: "into64"
name:
type: "string"
example: "ecma"
address:
type: "string"
example: "Long Street"
email:
type: "string"
example: "info@acme.com"
employees:
type: "array"
1tems:
$ref: "#/definitions/Employee"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 144

Generated API code (in Java)

@Api(value = "companies", description = "the companies API")
public interface CompaniesApi {

@Ap1i0Operation(value = "Add a new partner company to the collection"”, nickname = "addCompany", notes = "", tags={ "company", })
@ApiResponses(value = { @ApiResponse(code = 405, message = "Invalid input™) })
@RequestMapping(value = "/companies"”,

produces = { "application/json" },
consumes = { "application/json" },
method = RequestMethod.POST)
ResponseEntity<Void> addCompany(@ApiParam(value = "Company object that needs to be added to the collection” ,required=true) @Valid @RequestBody Company company);

@Ap1i0Operation(value = "Get the list of all companies"”, nickname = "getCompanies"”, notes = "", response = Company.class, responseContainer = "List", tags={ "company", })
@ApiResponses(value = { @ApiResponse(code = 200, message = "successful operation”, response = Company.class, responseContainer = "List") })
@RequestMapping(value = "/companies"”,

produces = { "application/json" },
consumes = { "application/json" },
method = RequestMethod.GET)

ResponseEntity<List<Company>> getCompanies(@ApiParam(value = "Filter companies by name, description, or address") @Valid @RequestParam(value = "search", required = false) String
search);
@Ap10Operation(value = "Update an existing company”, nickname = "updateCompany", notes = "", tags={ "company", })

@ApiResponses(value = { @ApiResponse(code = 400, message = "Invalid ID supplied™),
@ApiResponse(code = 404, message = "Company not found"),

@ApiResponse(code = 405, message = "Validation exception") })

@RequestMapping(value = "/companies",
produces = { "application/json" },
consumes = { "application/json" },
method = RequestMethod.PUT)
ResponseEntity<Void> updateCompany(@ApiParam(value = "Company object that needs to be updated in the collection" ,required=true) @Valid @RequestBody Company company);

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 145

Generated Model Code

public class Company {
@JsonProperty("1d")
private Long 1d = null;

@JsonProperty("name")
private String name = null;

@JsonProperty("address™)
private String address = null;

@JsonProperty("email™)
private String email = null;

@JsonProperty("employees™)

@Valid
private List<Employee> employees = null;

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 146

Online information about AP

¢} swagger default api-docs) [Explore

Partner Companies

This is a sample directory of partner companies.

company Show/Hide List Operations = Expand Operations
/companies Get the list of all companies

Response Class (Status 200)
successful operation

Viode! Example Value

"address": "Long Street",
"email": "info@acme.com",
"employees": [
{
"company": {
"address": "Long Street",
"email": "info@acme.com",
"employees": [y

Response Content Type application/json

Parameters
Parameter Value Description Parameter Type Data Type
search Filter companies by name, query string

Internet Applications Design and Implen descriplion;ioraddross 147

Online information about AP

Jeolsy /companies Add a new partner company to the collection
Parameters
Parameter Value Description _Fr’%aelmeter Data Type
company (required) Company object that body odel Example Value
needs to be added to the
collection {
"address'": '"Long Street",
"email": "info@acme.com",
A "employees": [
{
Parameter content type: application/json “company": {},
"email": "john@acme.com",
1] idu : @ ,
"jobs": "boss",
"name": "John"
! y
Response Messages
HTTP Status Code Reason Response Model Headers
200 OK
201 Created
401 Unauthorized
403 Forbidden
404 Not Found
405 Invalid input
Try it out!

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 148

Machine readable specification

@RestController

@RequestMapping("/product")

@Api(value="onlinestore", description="Operations pertaining to products in Online Store")
public class ProductController {

private ProductService productService;
@Autowired

public void setProductService(ProductService productService) {
this.productService = productService;

}

@ApiOperation(value = "View a list of available products",response = Iterable.class)

@ApiResponses(value = {
@ApiResponse(code = 200, message = "Successfully retrieved list"),
@ApiResponse(code = 401, message = "You are not authorized to view the resource"),
@ApiResponse(code = 403, message = "Accessing the resource you were trying to reach is forbidden"),
@ApiResponse(code = 404, message = "The resource you were trying to reach 1is not found")

}

)

@RequestMapping(value = "/list", method= RequestMethod.GET, produces = "application/json")

public Iterable<Product> list(Model model){
Iterable<Product> productList = productService.listAllProducts();
return productList;

}
@ApiOperation(value = "Search a product with an ID",response = Product.class)
@RequestMapping(value = "/show/{id}", method= RequestMethod.GET, produces = "application/json")

public Product showProduct (@PathVariable Integer 1d, Model model){
Product product = productService.getProductById(id);
Internet Applicatio return product;T © 2015, Jodo Costa Seco 149

Machine readable specification

Internet Applications Design and Impler;

@® Swagger Ul X

— f ‘ ® localhost:8080/swagger-ui.html#!/product-controller/listUsingGET

product-controller : Operations pertaining to products in Online Store

/product/add

/product/delete/{id}

Show/Hide List Operations

Response Class (Status 200)
Successfully retrieved list

Viodel Example Value

{}

Response Content Type | application/json ¥ |

Response Messages

Expand Operations
Add a product

Delete a product

/product/list View a list of available products

trying to reach is forbidden

ound

HTTP Status Code Reason Response Model Headers
401 You are not authorized to view the

resource
403 Accessing the resource you were

hitts://springffarfiBwork. glrt/Sprirg-boot-restful-api-documentation-with-swagger-2/

150

Machine readable specification

@Entity
public class Product {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
@ApiModelProperty(notes = "The database generated product ID")
private Integer 1id;
@Version
@ApiModelProperty(notes = "The auto-generated version of the product")
private Integer version;
@ApiModelProperty(notes = "The application-specific product ID")
private String productlId;
@ApiModelProperty(notes = "The product description")
private String description;
@ApiModelProperty(notes = "The image URL of the product")
private String imageUrl;
@ApiModelProperty(notes = "The price of the product", required = true)
private BigDecimal price;

Internet Applications Design and Implem}’e]ri[;[agl)oﬁ,:!(/&/Qggq%%@’a{noeag\é%srtbsgyru/Spring_bOOt_reStfu|_api_dOCUmentation_With_Swagger_z/ 151

Machine readable specification

| | -] W
@® Swagger Ul X

— C | @ localhost:8080/swagger-ui.html#!/product-controller/showProductUsingGET w

/product/show/{id} Search a product with an ID

Response Class (Status 200)
OK

Model

Product {
description (string, optional): The product description,
id (integer, optional). The database generated product ID,
imageUrl (string, optional): The image URL of the product,
price (number): The price of the product,
productld (string, optional): The application-specific product ID,
version (integer, optional): The auto-generated version of the product

Internet Applications Design and Implemlfe]er[tJ[aQo%:K/&/Qggq%%%n%g\é%snbsgyru/spring_bOOt_reStfu|_api_documentation_With_Swagger_z/ 152

Internet Applications Design and Implementation
(Lecture 3 - Part 2 - RESTful interfaces in practice)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

RESTful design

* Resource = object or representation of something

o Collection = a set of resources
 URI = a path identitying resources and allowing actions on them

 URL methods represents standardised actions
« GET = request resources
« POST = create resources

« PUT = update or create resources

e DELETE = deletes resources

e HTTP Response codes = operation results
e 20x Ok
e 3xx Redirection (not modified)
400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found

e bxx Server Error
e Searching, sorting, filtering and pagination obtained by query string parameters

* Text Based Data format (JSON, or XML)

https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c¢c9

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 154

https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9

THE RICHARDSON MATURITY MODEL

LEVEL 3: HYPERTEXT AS THE
ENGINE OF APPLICATION
STATE (HATEOAS)

HYPERMEDIA

LEVEL 2: INTERACTION WITH URI

POX SWAMP

>_ HTTP RESOURCES USING DIFFERENT
T HTTP VERBS
e
D
I—
< URI LEVEL 1: MULTIPLE URI BASED
E RESOURCES AND SINGLE VERBS
al)
< T — —: T

- - LEVEL O: PLAIN OLD XML

https://martinfowler.com/articles/richardsonMaturityModel.htm|
http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/

155

https://martinfowler.com/articles/richardsonMaturityModel.html

Richardson Maturity Model @

N
Glory of REST ,

Level 3: Hypermedia Controls
—
Level 1: Resources

Level 0: The Swamp of POX

https://martinfowler.com/articles/richardsonMaturityModel.htm|
http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitédo 156

https://martinfowler.com/articles/richardsonMaturityModel.html

T'he Richardson Maturity Moael - Level O

e POX Swamp

* Jo send an XML/JSON that contains everything: operation, arguments, options

<openSlotList>
POST /appointmentService HTTP/1.1 <slot start = "1400" end = "1450">
"various other headers] <doctor id = "mjones"/>
</slot>
<openSlotRequest date = "2010-01-04" doctor = "mjones"/> <slot start = "1600" end = "1650">
<doctor id = "mjones"/>
</slot>
</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitédo 157

T'he Richardson Maturity Moael - Level O

e POX Swamp

* Jo send an XML/JSON that contains everything: operation, arguments, options

POST /appointmentService HTTP/1.1
[various other headers]

<appolntmentRequest>
<slot doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>

: HTTP/1.1 200 OK
</appointmentRequest>

‘various headers]

<appointmentRequestFailure>
<slot doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>
<reason>Slot not available</reason>
</appointmentRequestFailure>

Internet Applications Design and Implementation, FCTUNL, © 2015, Joado Costa Seco, Jacome Cunha, Jodo Leitao 158

I'he Richardson Maturity Model - Level 1

 Multiple URI Based Resources and Single verbs

HTTP/1.1 200 OK

POST /doctors/mjones HTTP/1.1 [various headers]

'various other headers]

<openSlotRequest date = "2010-01-04"/> <openSlotList>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>
</openSlotList>
POST /slots/1234 HTTP/1.1 HTTP/1.1 200 OK
[various other headers] [various headers]
<appointmentRequest> <appointment>
<patient id = "jsmith"/> <slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
</appointmentRequest> <patient id = "jsmith"/>
</appointment>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitédo 159

I'he Richardson Maturity Model - Level 1

 Multiple URI Based Resources and Single verbs

@Controller @RequestMapping(value =
class PetController @Autowired constructor (val db: MongoDB) {

@RequestMapping(value =method = array0Of(RequestMethod.GET))
public fun add(@RequestParam("ownerId") ownerIdParam: String, model: Model): String {
db.withSession {
val owner = Owners.find { id.equal(Id(ownerIdParam)) }.single()
model.addAttribute("owner", owner)
val petTypes = PetTypes.find().toList()
model.addAttribute("petTypes", petTypes)
+

return "pets/add"

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&do Leitdo 1060

https://github.com/cheptsov/kotlin-nosql-mongodb-petclinic/blob/master/src/main/kotlin/kotlinx/nosql/mongodb/samples/petclinic/controllers/pets/PetController.kt

I'he Richardson Maturity Model - Level 2

* |nteraction with URI resources using different HT TP verbs

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1
Host: royalhope.nhs.uk

HTTP/1.1 200 OK
[various headers]

<openSlotList>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>

</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&do Leitdo 161

I'he Richardson Maturity Model - Level 2

* |nteraction with URI resources using different HT TP verbs

POST /slots/1234 HTTP/1.1 HTTP/1.1 201 Createa

[various other headers] Location: slots/1234/appointment

[various headers]

<appointmentRequest>
<patient id = "jsmith"/>
</appointmentRequest>

<appointment>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>

</appointment>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 162

I'he Richardson Maturity Model - Level 2

* |nteraction with URI resources using different HT TP verbs

HTTP/1.1 201 Created
Location: slots/1234/appointment
[various headers]

POST /slots/1234 HTTP/1.1

: <appolntment>
[various other headers] PP

<slot 1d = "1234" doctor
<patient id = "jsmith"/>

"mjones" start = "1400" end = "1450"/>

<appointmentRequest> </appointment>
<patient id = "jsmith"/>
</appointmentRequest> HTTP/1.1 409 Conflict

[various headers]

<openSlotList>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>

</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&do Leitdo 103

The Richardson Maturity Model - Level 3

« Hypermedia Controls - HATEOAS

 Resources are interconnected by links in the response, one entry point

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1

Host: royalhope.nhs.uk
HTTP/1.1 200 OK

[various headers]

<openSlotList>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450">
<link rel = "/linkrels/slot/book"
uri = "/slots/1234"/>
</slot>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650">

<link rel = "/linkrels/slot/book"
uri = "/slots/5678"/>
</slot>
</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo 104

REST = Resource state transformation

 [he resources that are provided by the APl do not have to map the structure of
the internal system state.

* Provided resources may have a nested structure that results from a relational

structure of several database tables. {“name”:"joe”,
*address”: “London, UK?”,
“telephone™:."555000222%,
“pets”|

Pet {“name”:“MaX”,

name:String | <|name:String “species”:”Canis lupus familiaris”,
address:String species:String q "age”:3},
telephone:String age:Int {“name”:“Max”,

“species”:."Canis lupus familiaris”,

"age”:3}
1},

{*"name”,”mary’,
“address™..... }

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 165

Internet Applications Design and Implementation

2020 - 2021
(Lecture 3 - Part 3 - Server-side MVC Architecture)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

| %
Web architectures, patterns and styles KA

 Web applications usually follow a MVC architectural pattern.
 Model layer - isolate the representation of persistent data and its operations, validations and conditions

* (Controller - contains the core application logic implementing the application interface (e.g. ad-hoc URL
mapping, REST convention)

* View - defines the way in which responses are formed (e.g. HTML, JSON)

Chol * Comm™ web
Wik e Dak

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

167

A
Summary - Web Frameworks ‘(\%

 Web Frameworks are “languages” that carry libraries and abstractions that get
complled to run on the "web virtual machine”.

Cueml Comm’ Wb
Sk

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 168

The classic MVC design pattern

* The Model-View-Controller (Reenskaug’79, JOT'88)

(MODEL 4\
* designed to develop GUI
UPDATES MANIPULATES
 popular in web applications’ context v
| | VIEW CONTROLLER
» Variants of the MVC Architecture . g
. \)
(Separation of Concerns) ‘?a\ &
/
« MVP PM (Fowler), MVVM (Microsoft) USER
Ul Logic PresLeongt;tuon Bt:’i;i?s
(Code Behind) and Data

https://manojjaggavarapu.wordpress.com/2012/05/02/presentation-patterns-mvc-mvp-pm-mvvm/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco

169

Internet Applications are Data-Centric

User
Interface Layer

Presentation
Layer

Application
Layer

Service
Layer

Domain
Layer

Data
Layer

https://dzone.com/articles/layered-architecture-is-good

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitédo 170

https://dzone.com/articles/layered-architecture-is-good

Frameworks and MVC Architecture

 Frameworks help to Implement and maintain architectures.

o i - MVC
Ralls (2005).
* conventions on folder, Model View
file, and class names v\\‘ /
* Aflexible OO prog language
(Ruby) supports data sharing | Controller
between model, controller, |
: : Dispatcher
and view objects. coutes il |
Web Server

r
oo |

https://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 171

Frameworks and MVC Architecture

 Frameworks help to Implement and maintain architectures.

¢ Django (2005)2 MVC

* views are controllers Model View
 templates are views '\\‘ /
e models are models ~ Controller
Dispatcher l
Routes
Web Server

T
oo |

https://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 172

Frameworks and MVC Architecture

e Java Spring is a component-based programming framework
(based on configuration).

e |t does the "plumbing,” and lets components implement the “logic” of

applications.

 How spring implements the MVC pattern

Dependency Injection (inversion of control)

Aspect-Oriented Programming including Spring's declarative transaction management

Spring MVC web application and

-oundational support for J

D

3C, J

RESTTul web service framework

PA, JMS

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

https://spring.io/guides/

173

Inversion of Control

e Design pattern where user-defined code fragment receives the flow of control
from a generic framework.

* (Context: object-oriented programming

e Found in; Frameworks, Event handlers, Callbacks

 Dependency Injection
* An instance of inversion of control to build object networks

 (Centralised broker that maps types to implementations

e Java Spring: Pool of beans/components, auto-wiring of object networks

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo 174

Without inversion of Control N

o Explicit initialisation of references

@RestController @Service

@RequestMapping("/") class EmployeeService(val employees:EmployeeRepository) {

class EmpController(val employees:EmployeeService) { fun teamMembersOfProject(id:String) = employees.findALL()
¥

@GetMapping("/api/departments/{id}/employees™)

fun employeesOfDepartment(interface EmployeeRepository : CrudRepository<Employee, Long>
@PathVariable 1d:String,

@RequestParam search:String?

)
= 11stOf(
Employee("John Oliver",40, "New York"),
Employee("John Gleese", 6@, "London™) fun someMethod() {
) EmpController(
EmployeeService(
@GetMapping("/api/projects/{id}/team™) EmployeeRepositoryImp(
fun teamMembersOfProject(DBConnection("...")
@PathVariable 1id:String))
)
= employees.teamMembersOfProject(id) ,)

Internet Applications'Design and Implementation, FCTUNL, © 2015, Joao Costa Seco, Jacome Cunha, Jodo Leitao 175

Without inversion of Control

o Explicit initialisation of references

package pt.unl.fct.demo.controllers;
import org.springframework.web.bind.annotation.*;

import pt.unl.fct.demo.model.Company;
import pt.unl.fct.demo.services.CompaniesService;

@RestController
@RequestMapping(value="/companies")

CompaniesService companies;

Spring uses annotations to indicate the
kind of class, and where to plug it in

public CompaniesController(CompaniesService companies) {
this.companies = companies;

}

@GetMapping("™)

Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) {
// Do some extra checking on the request, and then...
return companies.getAllCompanies(search);

}

@PostMapping("")
void addNewCompany(@RequestBody Company company) {
// Do some extra checking on the request, and then...

companties.addCompany(company);

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo 1706

Without inversion of Control

o Explicit initialisation of references

package pt.unl.fct.demo.controllers;
import org.springframework.web.bind.annotation.*;

import pt.unl.fct.demo.model.Company;
import pt.unl.fct.demo.services.CompaniesService;

@RestController
@RequestMapping(value="/companies")

CompaniesService companies;

Instead of doing it explicitly ->>

public CompaniesController(CompaniesService companies) {
this.companies = companies;

¥

@GetMapping("™")

Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) {
// Do some extra checking on the request, and then...
return companies.getAllCompanies(search);

¥

@PostMapping("")
void addNewCompany(@RequestBody Company company) {
// Do some extra checking on the request, and then...

companies.addCompany(company);

Internet Applications Design and Implementation, NOVA SST, © 2015, Joao Costa Seco

import
import
import

public

javax.servlet.http.*;
javax.servlet. *;
java.lo.*;

class DemoServ extends HttpServlet{

public void doGet (HttpServletRequest req,

HttpServletResponse res)
throws ServletException,IOException

{
res.setContentType("text/html");
PrintWriter pw=res.getWriter();
String name=req.getParameter("'name");
pw.println("Welcome "+name);
pw.close();

}

}

from: https://www.javatpoint.com/servietrequest

177

https://www.javatpoint.com/servletrequest

Without inversion of Control

o Explicit initialisation of references

Y.~ resources :photos

package pt.unl.fct.demo.controllers;
import org.springframework.web.bind.annotation.*; creates seven different routes in your application, all mapping to the Photos controller:
import pt.unl.fct.demo.model.Company;
import pt.unl.fct.demo.services.CompaniesService;
HTTP Verb Path Controller#Action Used for
@RestController : : :
@RequestMapping(value="/companies") resources In ru by nral |S GET /photos photos#index display a list of all photos
o T R a whole DSL to define >> |
return an HTML form for creating a new
CompaniesService companies; I’OU’[GS GET /photos/new photos#new photo
blic C LesController(CompaniesService companies
PUubtLe ompantes (. p.)a ! Vi pantes) 1 POST /photos photos#create create a new photo
this.companies = companies;
¥
GET /photos/:id photos#show display a specific photo
@GetMapping("™")
Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) { GET /photos/:id/edit = photos#edit return an HTML form for editing a photo
// Do some extra checking on the request, and then...
return companies.getAllCompanies(search); PATCH/PUT @ /photos/:id photos#update update a specific photo
¥
. DELETE /photos/:id photos#destroy delete a specific photo
@PostMapping("")
void addNewCompany(@RequestBody Company company) {
// Do some extra checking on the request, and then...
companies.addCompany(company); https://guides.rubyonrails.org/routing.html

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 178

https://guides.rubyonrails.org/routing.html

Using Dependency Injection

o Explicitly tell what things are, let spring do the wiring

@RestController
@RequestMapping(" /")
class EmpController() {

@Autowired
lateinit var employees:EmployeeService

@GetMapping("/api/departments/{1d}/employees™)
fun employeesOfDepartment(

@PathVariable 1d:String,

@RequestParam search:String?

Declare dependencies explicitly
to be initialised by Spring

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo 179

Using Dependency Injection

c

o Explicitly tell what things are, let spring do the wiring

@RestController Declare constructor dependencies

@RequestMapping(" " and let Spring initialise correctly
class EmpControllgr(val employees:EmployeeService) {

@GetMapping("/api/departments/{1d}/employees™)
fun employeesOfDepartment(

@PathVariable 1d:String,

@RequestParam search:String?

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&do Leitdo 180

Frameworks and MVC Architecture

e Java Spring is a component-based programming framework (based on
configuration).

e |t does the "plumbing,” and lets components implement the “logic” of
applications.

 How spring implements the MVC:

@SpringBootApplication
class McgApplication

fun main(args: Array<String>) {
runApplication<McgApplication>(*args)
¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 181

Frameworks and MVC Architecture

e Java Spring Is a configuration and programming framework.

e |t does the "plumbing”, and lets the components implement the “logic” of
applications.

 How spring implements the MVC: (in Java)

@Configuration
@Configuration | B
@EnableAutoConfiguration Annotation specifies that
@EnableWebMvc the class has Bean
@ComponentScan definition methods

public class Application {
public static void main(String[] args) {

SpringApplication.run(Application.class, args);

¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 182

Frameworks and MVC Architecture

e Java Spring Is a configuration and programming framework.

e |t does the "plumbing”, and lets the components implement the “logic” of

applications.

* How spring implements the MVC

@Configuration

@EnableAutoConfiguration
@EnableWebMvc

@ComponentScan
public class Application {

public static void main(String[] args) {

SpringApplication.run(Application.class, args);

¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Joao Costa Seco

@EnableAutoConfiguration

Attempts to guess and
configure beans that you are
ikely to need (doc.spring.io)

183

http://doc.spring.io

Frameworks and MVC Architecture

e Java Spring Is a configuration and programming framework.

e |t does the "plumbing”, and lets the components implement the “logic” of

applications.

* How spring implements the MVC

@Configuration
@EnableAutoConfiguration
@EnableWebMvc
@ComponentScan

public class Application {

public static void main(String[] args) {

SpringApplication.run(Application.class, args);

¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Joao Costa Seco

@ComponentScan

Configures component
scanning.lf specitic packages
are not defined, scanning will
occur from the package of the
class that declares this
annotation.

184

Frameworks and MVC Architecture

e Java Spring Is a configuration and programming framework.

e |t does the "plumbing”, and lets the components implement the “logic” of
applications.

 How spring implements the MVC (Here the view is an HTML (thymeleatf)

template) @Controller

public class GreetingController {

private static final String template = "Hello, %s! %d”;
private final AtomiclLong counter = new AtomicLong();

@RequestMapping("/greeting")
public String greeting(@RequestParam(value="name", defaultValue="World") String name,
Model model) {
long ¢ = counter.incrementAndGet();
model .addAttribute(“message”, String.format(template, name, c));

(19 =).
returnj] greeting’,;

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 185

¥

Frameworks and MVC Architecture

e Java Spring Is a configuration and programming framework.

e |t does the "plumbing”, and lets the components implement the “logic” of
applications.

 How spring implements the MVC (Here the view is a JSON object formatter)

@RestController
public class GreetingController {

private static final String template = "Hello, %s!";
private final Atomiclong counter = new AtomiclLong();

@RequestMapping("/greeting")
public Greeting greeting(@RequestParam(value="name", defaultValue="World") String name) {
return new Greeting(counter.incrementAndGet(),
String.format(template, name));

¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 186

Add-ons to the MVC Framework

@Component
° ReSOurCG COH’[I’O\' public class BookingService {
DB ConnectiOn & private final static Logger logger = LoggerFactory.getlLogger(BookingService.class);
transactions private final JdbcTemplate jdbcTemplate;

public BookingService(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

h

@Transactional
public void book(String... persons) {
for (String person : persons) {

logger.info("Booking " + person + " in a seat...");
jdbcTemplate.update("insert into BOOKINGSCFIRST_NAME) values (?)", person);

¥

public List<String> findAl1Bookings() {
return jdbcTemplate.query("select FIRST_NAME from BOOKINGS",
(rs, rowNum) -> rs.getString("FIRST_NAME"));

¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 187

Add-ons to the MVC Framework

@Configuration

* Across application @EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

concerns. SeCUth @0)verride
protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.antMatchers("/", "/home").permitAll1()
.anyRequest().authenticated()
.and()
.formLogin()
.LoginPage("/login™)
.permitAlLL()
.and()
.Llogout()
.permitAll();
¥
@Autowired
public void configureGlobal (AuthenticationManagerBuilder auth) throws Exception {
auth

.1nMemoryAuthentication()
withUser("user").password("password").roles("USER");

¥
¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 188

Example of an Architecture built with Spring

HTTP Server

Tomcat

Controller

Service/

Repository/

e Spring is a component framework
* Resolves component dependencies by dependency Injection
* Uses annotations to configure components

@RestController
@RequestMapping("/™)
class EmpController(val employees:EmployeeService) {

// http GET :8080/api/projects/2/team
@GetMapping("/api/projects/{id}/team™)
fun teamMembersOfProject(

@PathVariable 1d:String

)

= employees.teamMembersOfProject(id)

¥

@Service

class EmployeeService(val employees:EmployeeRepository) {
fun teamMembersOfProject(id:String) = employees.findAl1()

¥

interface EmployeeRepository : CrudRepository<Employee, Long>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

'96‘0

R/

189

Architecture to the rescue of testers

e Unit tests should test
components In isolation

e Defining the context for a
component (correctly) Is
laborious and error prone

e Difficult to do with persistent
data (must prepare tests)

* |mpossible to do In tightly

coupled structures

o Component fram
Ng of
€S

allow mocki
dependenc

eworks

@SpringBootTest
@AutoConfigureMockMvc
open class RESTApplicationTests() {

@Autowired lateinit var mvc: MockMvc

@MockBean lateinit var questions:QuestionRepository

@Test
fun "basic REST test () {

c

Mockito. when (questions.findAlLL()).thenReturn(l)

mvc.perform(get(questionsURL))
.andExpect(status().1s0k)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

190

Architecture to the rescue of testers

@SpringBootTest Replaces web server
@AutoConfigureMockMvc

open class RESTApplicationTests() {

@Autowired lateinit var

@MockBean | lateinit var questions:QuestionRepository
Replaces component

@Test with Mock object
fun— Wall® :

Mockito. when (questions.findAlLL()).thenReturn(l)

mvc.perform(get(questionsURL)) ‘k\\\“~\~

.andExpect(status().is0k) R?p‘aces call results
} with expected values

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&do Leitdo 191

Architecture to the rescue of testers

e Unit tests should test
components In isolation

o Unit tests simulate inputs
and compare outputs

 Mock components create a
controlled context for each
test or set of tests.

Controller

Service/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitédo

Controller
Tester

Mock Service

Service

Tester

c

Mock
Repository

192

Internet Applications Design and Implementation
2020 - 2021

(Lecture 3 - Part 4 - MicroService Architecture: Service Discovery)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt

A Cloud Pattern: Service Discovery

o Example following Netflix Eureka

* Provides services for Service Registry and
Service Discovery

* [trelies on a single fixed point, which is the
—ureka Server

e Netflix Eureka was reimplemented in SR
Spring Cloud projects

1. Register!

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 194

https://microservices.io/patterns/service-registry.html

A Cloud Pattern: Service Discovery

o Example following Netflix Eureka

* Provides services for Service Registry and
Service Discovery

* [trelies on a single fixed point, which is the
—ureka Server

e Netflix Eureka was reimplemented in
Spring Cloud projects

Service
Registry Service 4
2. Query

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco 195

https://microservices.io/patterns/service-registry.html

A Cloud Pattern: Service Discovery

o Example following Netflix Eureka

* Provides services for Service Registry and
Service Discovery

* [trelies on a single fixed point, which is the
—ureka Server

. . . Service
* Netflix Eureka was reimplemented in Registry
Spring Cloud projects /
3. Connect
Service 2 _>

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco 196

https://microservices.io/patterns/service-registry.html

‘ ;)\ Spr|ng by VMware Tanzu Why Spring v Learn v Projects v Academy v Solutions v Community v @

Spring Boot Spring Cloud (z=s: 02

Spring Framework

Spring Data >

Spring Cloud v OVERVIEW LEARN SAMPLES

Spring Cloud Azure

. , Spring Cloud provides tools for developers to quickly build some of the common patterns in distributed
Spring Cloud Alibaba

systems (e.g. configuration management, service discovery, circuit breakers, intelligent routing, micro-proxy,

Spring Cloud for Amazon control bus, short lived microservices and contract testing). Coordination of distributed systems leads to boiler

Web Services S
plate patterns, and using Spring Cloud developers can quickly stand up services and applications that

Spring Cloud Bus implement those patterns. They will work well in any distributed environment, including the developer’s own
Spring Cloud Circuit laptop, bare metal data centres, and managed platforms such as Cloud Foundry.

Breaker

Spring Cloud - Cloud

Foundry Service Broker Spring Cloud focuses on providing good out of box experience for typical use cases and extensibility

Spring Cloud Commons mechanism to cover others.

Spring Cloud Config e Distributed/versioned configuration

Spring Cloud Consul * Service registration and discovery

Sorine Cloud Contract * Routing

Fureka Server

 Add the dependency to the project (change to spring-boot 3.2.8).

<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>

</dependency>
faer :

 Enable the server in a configuration class

Introduction to Spring

@SpringBootApplication Cloud Netflix - Eureka

@EnableEurekaServer e

class EurekaServerApplication whton by cowed by
pp ‘ ‘ baeldung ‘ SlaviSa Avramovi¢ mm

reference

<dependencyManagement>
ies>

<dependency>
<groupIld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-parent</artifactId>

Needs a dep. manager for spring cloud

</dependencies>
</dependencyManagement>

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco 198

https://www.baeldung.com/spring-cloud-netflix-eureka

Fureka Server

 Add the dependency to the project (change to spring-boot 3.2.8).

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>

</dependency>

 Enable the server in a configuration class

Introduction to Spring

@SpringBootApplication Cloud Netflix - Eureka

@EnableEurekaServer e

class EurekaServerApplication whton by cowed by
pp ‘ ‘ baeldungl ‘ SLaviéaAvrarﬁovié mm

reference

spring.application.name=Eureka-server

server.port=8761

Needs a configurations application.properties

eureka.client.register-with-eureka= false
eureka.client.fetch-registry= false

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco 199

https://www.baeldung.com/spring-cloud-netflix-eureka

Fureka Server HTTP API (Nor really REST)

Operation HTTP action Description
Register new application instance POST /eureka/v2/apps/applD g:iléte:;SSON/XML peyleat [TV Cgete: 204 el
De-register application instance DELETE /eureka/v2/apps/applD/instancelD HTTP Code: 200 on success

. : HTTP Code:
Send application instance heartbeat PUT /eureka/v2/apps/applD/instancelD “ 500 6N SUCCESS
Query for all instances GET /eureka/v2/apps HTTP Code: 200 on success Output: JSON/XML
Query for all appID instances GET /eureka/v2/apps/applD HTTP Code: 200 on success Output: JSON/XML
Query for a specific applD/instancelD GET /eureka/v2/apps/applD/instancelD HTTP Code: 200 on success Output: JSON/XML
Query for a specific instancelD GET /eureka/v2/instances/instancelD HTTP Code: 200 on success Output: JSON/XML
Take instance out of service PUT /eureka/v2/apps/applD/instancelD/status? HTTP Code:

value=OUT_OF_SERVICE * 200 on success

Move instance back into service DELETE /eureka/v2/apps/applD/instancelD/status?value=UP (The HTTP Code:
(remove override) value=UP is optional, it is used as a suggestion for the fallback status * 200 on success
Update metadata PUT /eureka/v2/apps/applD/instancelD/metadata?key=value HTTP Code:

* 200 on success

*HTTP Code: 200 on success Output: JSON/XML
* 404 if the vipAddress does not exist.

*HTTP Code: 200 on success Output: JSSON/XML
* 404 if the svipAddress does not exist.

Query for all instances under a

particular vip address GET /eureka/v2/vips/vipAddress

Query for all instances under a

. . GET /eureka/v2/svips/svipAddress
particular secure vip address

Fureka Server Ul

Internet Applicatic

) spring

System Status

Environment

Data center

DS Replicas

localhost

test

default

Instances currently registered with Eureka

Application

ORDERSERVICE

PRODUCTSERVICE

SOCIALAPP

USERSERVICE

n/a (1)
n/a (1)
n/a (1)

n/a (1)

Availability Zones
(1)
(1)
(1)
(1)

HOME LAST 1000 SINCE STARTUP

Current time 2024-10-06T17:59:13 +0100
Uptime 01:11

Lease expiration enabled true

Renews threshold 8

Renews (last min) 16

Status

UP (1) - joaos-air.lan:OrderService:0

UP (1) - joaos-air.lan:ProductService:0

UP (1) - joaos-air.lan:SocialApp:8080

UP (1) - joaos-air.lan:UserService:0

201

Fureka Services

 Add the dependency to the project (change to spring-boot 3.2.8).

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
o Configure to find the Eureka Server

spring.application.name=UserService

server .port=0
eureka.client.serviceUrl.defaultZone=${EUREKA URI:http://localhost:8761/eureka/}

eureka.instance.prefer-ip-address=true

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 202

Fureka Services

* Implement the APl as usual, isolate APl in an interface

interface HelloAPI {
@GetMapping("/hello")
fun hello(): String

@RestController

class UserController(var eurekaClient: EurekaClient) : HelloAPI {
@vValue("\S{spring.application.name}")
var appName: String? = null

override fun hello(): String {
return "Hello World! from ${eurekaClient.getApplication(appName).getName()}"

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 203

Eureka Clients (Feign - a declarative client)

 Add the dependency to the project (change to spring-boot 3.2.8).

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

o Configure to find the Eureka Server and provide an API in a fixed port (8080)
spring.application.name=SocialApp

server .port=8080
eureka.client.serviceUrl.defaultZone=${EUREKA URI:http://localhost:8761/eureka}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 204

Fureka Clients

v [(3 SocialApp ~/Documents/Repos/IADI-2024.github.io,

)

>

A4

) .idea
) .mvn

[src
v [main
v [kotlin

v [o]) org.example.socialapp

v [o]) presentation
(IR MainAPI
(@ MainApp
v (o] service
(I3 OrderService
(12 ProductService

(IR UserService

< SocialAppApplication.kt
v [Z2resources

Co application.properties

Implement the application in a layeread
architecture as usual.

@RestController
class MailnApp(
val userClient: UserService,
val orderService: OrderService,
val productService: ProductService
) : MainAPI {

override fun hello() =
listOf(userClient.hello(),
orderService.hello(),
productService.hello())

205

Fureka Clients

v [g SocialApp ~/Documents/Repos/IADI-2024.github.io,
> [D.idea
> [.mvn
v (D src
v [main
v [kotlin

v [o]) org.example.socialapp

v [o]) presentation
(IR MainAPI
(@ MainApp
v (o] service
(I3 OrderService
(12 ProductService

(IR UserService

< SocialAppApplication.kt
v [2resources

ca application.properties

Reuse the interfaces to make a connector.

@FeignClient("UserService")

interface UserService {
@GetMapping("/hello")
fun hello(): String

}

@FeignClient ("OrderService")

interface OrderService {
@GetMapping("/hello")
fun hello(): String

}

@FeignClient ("ProductService")
interface ProductService {
@GetMapping("/hello")
fun hello(): String

206

Fureka Clients

v [(3 SocialApp ~/Documents/Repos/IADI-2024.github.io, RGUSG ’[he interfaces O make a connector.

> [.idea
> [.mvn
v [DOsrc [
v [main "Hello World! from USERSERVICE",
p—— "Hello World! from ORDERSERVICE",

v [7 org.example,

. mpresenast . Hello World! from PRODUCTSERVICE"

(I MainA]

(@& MainApp I CGETMAPP I ([7 ITE T TU] —
v [o]) service fun hello(): String

(I3 OrderService }

(z ProductService @FeignClient("ProductService")

Iz UserService interface ProductService {

< SocialAppApplication.kt @GetMapping("/hello")
fun hello(): String

v [2resources

Ca application.properties 207

Extra Reading on Micro Services

O'REILLY" o,
Building °
Microservices

Designing Fine-Grained Systems

Sam Newman

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco 208

Extra Reading on Micro Services

S€ellngs.

When should we use Microservices?

Any architectural style has trade-offs: strengths and weaknesses that we must evaluate
according to the context that it's used. This is certainly the case with microservices. While it's a

useful architecture - many, indeed most, situations would do better with a monolith.

Microservices provide benefits...

¢ Strong Module Boundaries: Microservices reinforce

modular structure, which is particularly important for
larger teams.

¢ Independent Deployment: Simple services are easier to

deploy, and since they are autonomous, are less likely to
cause system failures when they go wrong.
¢ Technology Diversity: With microservices you can mix

multiple languages, development frameworks and data-
storage technologies.

...but come with costs

x Distribution: Distributed systems are harder to program,

since remote calls are slow and are always at risk of failure.

x Eventual Consistency: Maintaining strong consistency is

extremely difficult for a distributed system, which means
everyone has to manage eventual consistency.
x Operational Complexity: You need a mature operations

team to manage lots of services, which are being
redeployed regularly.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco

209

https://martinfowler.com/microservices/

Microservice Architecture pattern

© pattern © application architecture & microservice architecture

Pattern: Microservice Architecture

Context §

You are developing a business-critical enterprise application. You need to deliver changes rapidly,
frequently and reliably - as measured by the DORA metrics - in order for your business to thrive in
today’s volatile, uncertain, complex and ambiguous world. Consequently, your engineering
organization is organized into small, loosely coupled, cross-functional teams as described by Team
Topologies. Each team delivers software using DevOps practices as defined by the DevOps
handbook. In particular, it practices continuous deployment. The team delivers a stream of small,
frequent changes that are tested by an automated deployment pipeline and deployed into

DevOps (Stream-aligned) teams

X

Order team

Owns

’ Order ’
Management

X %
%%%

X
0 A%
%%

Delivery team

Owns

production.
Consumer team
Owns
\J
«Subdomain.
stem operations: C
Systom oper gt
createOrder()
cancelOrder()
findOrderHistory()
createConsumer() -Aggrogate-
Consumer
Application

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco

-Dellvery.
Management

-Aggregate-

Order

-Aggregate-

Delivery

~Aggregate~
Courler

Extra Reading on Micro Services Patterns

Want to learn
how to design a
microservice
architecture?

Take a look at Assemblage, a
microservice architecture definition
process.

In my workshop, you will learn about
to use Assemblage to design a
microsevice architecture for your
application.

The starting point The process The resuit

210

https://microservices.io/patterns/microservices.html

APl Gateway Pattern

Gateway

An object that encapsulates access to an external system or resource

N A i1t DN 1
10 August 2021

Martin Fowler

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco

Leasing Application \

Asset

N\
N\

N\

Lease

|
|
|

AV L

7

Customer

4
7’
7’

Pricing Gateway

|

t
I
I

Y

Pricing Package

211

https://martinfowler.com/articles/gateway-pattern.html

Circuit-Breaker Pattern Circuit Breaker

Martin Fowler

‘ , \ ‘ circuit \ I : \
client Sy supplier

L

|
<€ — — — —

1 | connection |
I | problem |
| | |
1 | |
- |

A | je-a
* — — — = timeout! |
I timeout! | |
g l

"]

N
¢ — — — - timeout! |
timeout! : '
; Itnp

€t — — —

circuit open! |
[] .

>

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco 212

https://martinfowler.com/bliki/CircuitBreaker.html

